
Greedy Algorithms



Greedy Algorithm

• Most straight forward algorithm
• They are easy to invent, easy to implement

and – when they work – efficient.
• Typically used to solve Optimization Problems
• Crude Approach, so many problems cannot be

solved correctly.
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Making Change (1) Problem
• Suppose, a country has following coins:

100 paisa, 25 paisa, 10 paisa, 5 paisa & 1 paisa
• Our Problem is to devise an algorithm for paying a

given amount using smallest possible number of
coins.

• E.g. if we want to pay Rs. 2.89 (289 paisa)
Then the best solution is to give 10 coins:
2  X  100  paisa  = 200 paisa   (2 coins)
3  X   25 paisa    =  75 paisa    (3 coins)
1  X   10 paisa    =   10 paisa    (1 coin)
4  X    1  paisa    =    4 paisa     (4 coins)

TOTAL  = 289 paisa   (10 coins)
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Making Change (1) Problem
• This is example of Greedy Algorithm
• For this problem we are always getting a Optimal

Solution; however with a different series of values,
or if the supply of some of the coins is limited, the
greedy algorithm may not work.

• The algorithm is “greedy” because at every step it
chooses the largest coin it can, without worrying
whether this will prove to be a sound decision in the
long run.
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General Characteristics of Greedy Algorithm
• To construct the solution of our problem, we have a set of

candidates. (Available coins)
• As algorithm proceeds, we accumulate two other sets. One

contains candidates that have already been considered and
chosen, while the other contains candidates that have been
considered and rejected.

• There is a function that checks whether a particular  set of
candidates provides a solution to our problem.

• A second function checks whether a set of candidates is
feasible.

• The selection function, indicates at any time which of the
remaining candidates, that have neither been chosen nor
rejected, is the most promising.

• Finally, an objective function gives the value of a solution.
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Greedy Algorithm
function greedy(C: set) : set

{C is the set of candidates}

s = Ø {we construct the solution in the set S}

while  c <> Ø  and not solution(s) do
x = select(c)
c = c \ {x}

if feasible ( s U {x} ) then s = s U {x}
if solution(s) then return s
else return “No Solution”
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Graphs: Minimum Spanning Trees
• Let G = <N,A> be a connected, undirected graph.

where N is the set of nodes and A is the set of edges.
Each edge has given length.

Problem: The Problem is to find a subset T of the edges
of G such that all the nodes remain connected, and
the sum of the lengths of the edges in T is as small as
possible.

Note: A connected graph with n nodes must have at least n-1
edges, on other side,  a graph with n nodes and more than n-1
edges contains at least one cycle.
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Greedy Algorithm

• The candidates are the edges in G
• A set of edges in solution if it consists a

spanning tree for nodes in N
• A set of edges is feasible if it does not include

a cycle
• Objective is to minimize the total length
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1. Kruskal’s Algorithm (MST Problem)
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Kruskal’s Algorithm (MST Problem)
• Arrange all the edges of the graph in

increasing order of their length.
• So,

{1,2}, {2,3}, {4,5}, {6,7}, {1,4}, {2,5}, {4,7}, {3,5},
{2,4}, {3,6}, {5,7} and {5,6}
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Kruskal’s Algorithm (MST Problem)

Step Edge Considered Connected Components

Initialization -- {1}  {2}  {3}  {4}  {5}  {6}  {7}
1 {1,2} {1,2}  {3}  {4}  {5}  {6}  {7}
2 {2,3} {1,2,3}  {4}  {5}  {6}  {7}
3 {4,5} {1,2,3}  {4,5}  {6}  {7}3 {4,5} {1,2,3}  {4,5}  {6}  {7}
4 {6,7} {1,2,3}  {4,5}  {6,7}
5 {1,4} {1,2,3,4,5}  {6,7}
6 {2,5} Rejected
7 {4,7} {1,2,3,4,5,6,7}



Kruskal’s Algorithm (MST Problem)
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2. Prim’s Algorithm (MST Problem)
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Prim’s Algorithm (MST Problem)
• In this algorithm, the minimum spanning tree

grows in a natural way, starting from an
arbitrary root.

• At each stage we add a new branch to the tree
already constructed.

• The algorithm stops when all the nodes have
been reached.
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Prim’s Algorithm (MST Problem)
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Prim’s Algorithm (MST Problem)
Step {U,V} B

Initialization -- {1}
1 {1,2} {1,2}
2 {2,3} {1,2,3}
3 {1,4} {1,2,3,4}3 {1,4} {1,2,3,4}
4 {4,5} {1,2,3,4,5}
5 {4,7} {1,2,3,4,5,7}
6 {7,6} {1,2,3,4,5,6,7}



Prim’s Algorithm (MST Problem)
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Prim’s Algorithm (MST Problem)
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Prim’s Algorithm (MST Problem)
Step {U,V} B

Initialization -- {7}
1 {7,6} {6,7}
2 {7,4} {4,6,7}
3 {4,5} {4,5,6,7}3 {4,5} {4,5,6,7}
4 {4,1} {1,4,5,6,7}
5 {1,2} {1,2,4,5,6,7}
6 {2,3} {1,2,3,4,5,6,7}



Comparison of Kruskal’s & Prim’s Algorithm

• For a graph with V vertices E edges, Kruskal's
algorithm runs in O(E log V) time and Prim's
algorithm can run in O(E + V log V) amortized
time.

• Prim's algorithm is significantly faster in the
limit when you've got a really dense graph
with many more edges than vertices. Kruskal
performs better in typical situations (sparse
graphs) because it uses simpler data
structures.
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Another Example (MST Problem)



Answer


