
Greedy Algorithms

Greedy Algorithm

• Most straight forward algorithm
• They are easy to invent, easy to implement

and – when they work – efficient.
• Typically used to solve Optimization Problems
• Crude Approach, so many problems cannot be

solved correctly.

• Most straight forward algorithm
• They are easy to invent, easy to implement

and – when they work – efficient.
• Typically used to solve Optimization Problems
• Crude Approach, so many problems cannot be

solved correctly.

Making Change (1) Problem
• Suppose, a country has following coins:

100 paisa, 25 paisa, 10 paisa, 5 paisa & 1 paisa
• Our Problem is to devise an algorithm for paying a

given amount using smallest possible number of
coins.

• E.g. if we want to pay Rs. 2.89 (289 paisa)
Then the best solution is to give 10 coins:
2 X 100 paisa = 200 paisa (2 coins)
3 X 25 paisa = 75 paisa (3 coins)
1 X 10 paisa = 10 paisa (1 coin)
4 X 1 paisa = 4 paisa (4 coins)

TOTAL = 289 paisa (10 coins)

• Suppose, a country has following coins:
100 paisa, 25 paisa, 10 paisa, 5 paisa & 1 paisa

• Our Problem is to devise an algorithm for paying a
given amount using smallest possible number of
coins.

• E.g. if we want to pay Rs. 2.89 (289 paisa)
Then the best solution is to give 10 coins:
2 X 100 paisa = 200 paisa (2 coins)
3 X 25 paisa = 75 paisa (3 coins)
1 X 10 paisa = 10 paisa (1 coin)
4 X 1 paisa = 4 paisa (4 coins)

TOTAL = 289 paisa (10 coins)

Making Change (1) Problem
• This is example of Greedy Algorithm
• For this problem we are always getting a Optimal

Solution; however with a different series of values,
or if the supply of some of the coins is limited, the
greedy algorithm may not work.

• The algorithm is “greedy” because at every step it
chooses the largest coin it can, without worrying
whether this will prove to be a sound decision in the
long run.

• This is example of Greedy Algorithm
• For this problem we are always getting a Optimal

Solution; however with a different series of values,
or if the supply of some of the coins is limited, the
greedy algorithm may not work.

• The algorithm is “greedy” because at every step it
chooses the largest coin it can, without worrying
whether this will prove to be a sound decision in the
long run.

General Characteristics of Greedy Algorithm
• To construct the solution of our problem, we have a set of

candidates. (Available coins)
• As algorithm proceeds, we accumulate two other sets. One

contains candidates that have already been considered and
chosen, while the other contains candidates that have been
considered and rejected.

• There is a function that checks whether a particular set of
candidates provides a solution to our problem.

• A second function checks whether a set of candidates is
feasible.

• The selection function, indicates at any time which of the
remaining candidates, that have neither been chosen nor
rejected, is the most promising.

• Finally, an objective function gives the value of a solution.

• To construct the solution of our problem, we have a set of
candidates. (Available coins)

• As algorithm proceeds, we accumulate two other sets. One
contains candidates that have already been considered and
chosen, while the other contains candidates that have been
considered and rejected.

• There is a function that checks whether a particular set of
candidates provides a solution to our problem.

• A second function checks whether a set of candidates is
feasible.

• The selection function, indicates at any time which of the
remaining candidates, that have neither been chosen nor
rejected, is the most promising.

• Finally, an objective function gives the value of a solution.

Greedy Algorithm
function greedy(C: set) : set

{C is the set of candidates}

s = Ø {we construct the solution in the set S}

while c <> Ø and not solution(s) do
x = select(c)
c = c \ {x}

if feasible (s U {x}) then s = s U {x}
if solution(s) then return s
else return “No Solution”

function greedy(C: set) : set
{C is the set of candidates}

s = Ø {we construct the solution in the set S}

while c <> Ø and not solution(s) do
x = select(c)
c = c \ {x}

if feasible (s U {x}) then s = s U {x}
if solution(s) then return s
else return “No Solution”

Graphs: Minimum Spanning Trees
• Let G = <N,A> be a connected, undirected graph.

where N is the set of nodes and A is the set of edges.
Each edge has given length.

Problem: The Problem is to find a subset T of the edges
of G such that all the nodes remain connected, and
the sum of the lengths of the edges in T is as small as
possible.

Note: A connected graph with n nodes must have at least n-1
edges, on other side, a graph with n nodes and more than n-1
edges contains at least one cycle.

• Let G = <N,A> be a connected, undirected graph.
where N is the set of nodes and A is the set of edges.
Each edge has given length.

Problem: The Problem is to find a subset T of the edges
of G such that all the nodes remain connected, and
the sum of the lengths of the edges in T is as small as
possible.

Note: A connected graph with n nodes must have at least n-1
edges, on other side, a graph with n nodes and more than n-1
edges contains at least one cycle.

Greedy Algorithm

• The candidates are the edges in G
• A set of edges in solution if it consists a

spanning tree for nodes in N
• A set of edges is feasible if it does not include

a cycle
• Objective is to minimize the total length

• The candidates are the edges in G
• A set of edges in solution if it consists a

spanning tree for nodes in N
• A set of edges is feasible if it does not include

a cycle
• Objective is to minimize the total length

1. Kruskal’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

4 5 6

7

4 3

3 8

7

Kruskal’s Algorithm (MST Problem)
• Arrange all the edges of the graph in

increasing order of their length.
• So,

{1,2}, {2,3}, {4,5}, {6,7}, {1,4}, {2,5}, {4,7}, {3,5},
{2,4}, {3,6}, {5,7} and {5,6}

• Arrange all the edges of the graph in
increasing order of their length.

• So,
{1,2}, {2,3}, {4,5}, {6,7}, {1,4}, {2,5}, {4,7}, {3,5},
{2,4}, {3,6}, {5,7} and {5,6}

Kruskal’s Algorithm (MST Problem)

Step Edge Considered Connected Components

Initialization -- {1} {2} {3} {4} {5} {6} {7}
1 {1,2} {1,2} {3} {4} {5} {6} {7}
2 {2,3} {1,2,3} {4} {5} {6} {7}
3 {4,5} {1,2,3} {4,5} {6} {7}3 {4,5} {1,2,3} {4,5} {6} {7}
4 {6,7} {1,2,3} {4,5} {6,7}
5 {1,4} {1,2,3,4,5} {6,7}
6 {2,5} Rejected
7 {4,7} {1,2,3,4,5,6,7}

Kruskal’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

4 5 6

7

4 3

3 8

7

Total Length = 1+2+3+3+4+4= 17

2. Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)
• In this algorithm, the minimum spanning tree

grows in a natural way, starting from an
arbitrary root.

• At each stage we add a new branch to the tree
already constructed.

• The algorithm stops when all the nodes have
been reached.

• In this algorithm, the minimum spanning tree
grows in a natural way, starting from an
arbitrary root.

• At each stage we add a new branch to the tree
already constructed.

• The algorithm stops when all the nodes have
been reached.

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4 3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4
3

3 8

7

Prim’s Algorithm (MST Problem)

1 2 3
1 2

4
6

4
5

6

Starting
Node

4 5 6

7

4
3

3 8

7

Total Length = 1+2+3+3+4+4= 17

Prim’s Algorithm (MST Problem)
Step {U,V} B

Initialization -- {1}
1 {1,2} {1,2}
2 {2,3} {1,2,3}
3 {1,4} {1,2,3,4}3 {1,4} {1,2,3,4}
4 {4,5} {1,2,3,4,5}
5 {4,7} {1,2,3,4,5,7}
6 {7,6} {1,2,3,4,5,6,7}

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Starting
Node

Prim’s Algorithm (MST Problem)

2 3
1 2

4
6

4
5

6

1

4 5 6

7

4 3

3 8

7

Total Length = 1+2+3+3+4+4= 17

Prim’s Algorithm (MST Problem)
Step {U,V} B

Initialization -- {7}
1 {7,6} {6,7}
2 {7,4} {4,6,7}
3 {4,5} {4,5,6,7}3 {4,5} {4,5,6,7}
4 {4,1} {1,4,5,6,7}
5 {1,2} {1,2,4,5,6,7}
6 {2,3} {1,2,3,4,5,6,7}

Comparison of Kruskal’s & Prim’s Algorithm

• For a graph with V vertices E edges, Kruskal's
algorithm runs in O(E log V) time and Prim's
algorithm can run in O(E + V log V) amortized
time.

• Prim's algorithm is significantly faster in the
limit when you've got a really dense graph
with many more edges than vertices. Kruskal
performs better in typical situations (sparse
graphs) because it uses simpler data
structures.

• For a graph with V vertices E edges, Kruskal's
algorithm runs in O(E log V) time and Prim's
algorithm can run in O(E + V log V) amortized
time.

• Prim's algorithm is significantly faster in the
limit when you've got a really dense graph
with many more edges than vertices. Kruskal
performs better in typical situations (sparse
graphs) because it uses simpler data
structures.

Another Example (MST Problem)

Answer

