Greedy Algorithms

Greedy Algorithm

Most straight forward algorithm

They are easy to invent, easy to implement
and — when they work — efficient.

Typically used to solve Optimization Problems

Crude Approach, so many problems cannot be
solved correctly.

Making Change (1) Problem

e Suppose, a country has following coins:
100 paisa, 25 paisa, 10 paisa, 5 paisa & 1 paisa

 Our Problem is to devise an algorithm for paying a
given amount using smallest possible number of
coins.

e E.g.if we want to pay Rs. 2.89 (289 paisa)

Then the best solution is to give 10 coins:
2 X 100 paisa =200 paisa (2 coins)
3 X 25paisa = 75paisa (3 coins)
1 X 10paisa = 10paisa (1 coin)
4 X 1 paisa = 4 paisa__ (4 coins)
TOTAL =289 paisa (10 coins)

Making Change (1) Problem

* This is example of Greedy Algorithm

* For this problem we are always getting a Optimal
Solution; however with a different series of values,
or if the supply of some of the coins is limited, the
greedy algorithm may not work.

 The algorithm is “greedy” because at every step it
chooses the largest coin it can, without worrying
whether this will prove to be a sound decision in the
long run.

General Characteristics of Greedy Algorithm

To construct the solution of our problem, we have a set of
candidates. (Available coins)

As algorithm proceeds, we accumulate two other sets. One
contains candidates that have already been considered and
chosen, while the other contains candidates that have been
considered and rejected.

There is a function that checks whether a particular set of
candidates provides a solution to our problem.

A second function checks whether a set of candidates is
feasible.

The selection function, indicates at any time which of the
remaining candidates, that have neither been chosen nor
rejected, is the most promising.

Finally, an objective function gives the value of a solution.

Greedy Algorithm

function greedy(C: set) : set
{Cis the set of candidates}

s =@ {we construct the solution in the set S}
while c <> @ and not solution(s) do
X = select(c)
c=c\{x}
if feasible (s U {x}) then s =s U {x}
if solution(s) then return s
else return “No Solution”

Graphs: Minimum Spanning Trees

 Let G =<N,A> be a connected, undirected graph.

where N is the set of nodes and A is the set of edges.
Each edge has given length.

Problem: The Problem is to find a subset T of the edges
of G such that all the nodes remain connected, and
the sum of the lengths of the edges in T is as small as
possible.

Note: A connected graph with n nodes must have at least n-1
edges, on other side, a graph with n nodes and more than n-1
edges contains at least one cycle.

Greedy Algorithm

The candidates are the edges in G

A set of edges in solution if it consists a
spanning tree for nodes in N

A set of edges is feasible if it does not include
a cycle

Objective is to minimize the total length

1. Kruskal’s Algorithm (MST Problem)

Kruskal’s Algorithm (MST Problem)

* Arrange all the edges of the graph in
increasing order of their length.

* So,

{1,2}, {2,3}, {4,5}, {6,7}, {1,4}, {2,5}, {4,7}, {3,5},
{2,4}, {3,6}, {5,7} and {5,6}

Kruskal’s Algorithm (MST Problem)
Step | Edge Considered | Connected Components

Initialization -- {1} {2} {3} {4} {5} {6} {7}
1 {1,2} {1,2} {3} {4} {5} {6} {7}
2 {2,3} {1,2,3} {4} {5} {6} {7}
3 {4,5} {1,2,3} {4,5} {6} {7}
4 {6,7} {1,2,3} {4,5} {6,7}
5 {1,4} {1,2,3,4,5} {6,7}
6 {2,5} Rejected
7/ {4,7} {1,2,3,4,5,6,7}

Kruskal’s Algorithm (MST Problem)

Total Length = 1+2+3+3+4+4= 17

2. Prim’s Algorithm (MST Problem)

Prim’s Algorithm (MST Problem)

e |n this algorithm, the minimum spanning tree
grows in a natural way, starting from an

arbitrary root.
e At each stage we add a new branch to the tree
already constructed.

 The algorithm stops when all the nodes have
been reached.

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Starting
Node

Prim’s Algorithm (MST Problem)

1

Prim’s Algorithm (MST Problem)

Starting
Node 1

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Total Length = 1+2+3+3+4+4= 17

Prim’s Algorithm (MST Problem)
E T N

Initialization

o U B W N -

{1,2}
12,3}
{1,4}
4,5}
4,7}
17,6}

{1}

11,2}

{1,2,3}
{1,2,3,4)
{1,2,3,4,5}
{1,2,3,4,5,7}
{1,2,3,4,5,6,7}

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Starting
Node

Prim’s Algorithm (MST Problem)

Total Length = 1+2+3+3+4+4= 17

Prim’s Algorithm (MST Problem)
E T N

Initialization

o U B W N -

{7,6}
17,4}
{4,5}
4,1}
{1,2}
12,3}

{7}

16,7}

{4,6,7)
{4,5,6,7)
{1,4,5,6,7}
{1,2,4,5,6,7}
{1,2,3,4,5,6,7}

Comparison of Kruskal’s & Prim’s Algorithm

 For a graph with V vertices E edges, Kruskal's
algorithm runs in O(E log V) time and Prim's
algorithm can run in O(E + V log V) amortized
time.

 Prim's algorithm is significantly faster in the
limit when you've got a really dense graph
with many more edges than vertices. Kruskal
performs better in typical situations (sparse
graphs) because it uses simpler data
structures.

Another Example (MST Problem)

Answer

