Greedy Algorithms

Greedy Algorithm

- Most straight forward algorithm
- They are easy to invent, easy to implement and - when they work - efficient.
- Typically used to solve Optimization Problems
- Crude Approach, so many problems cannot be solved correctly.

Making Change (1) Problem

- Suppose, a country has following coins: 100 paisa, 25 paisa, 10 paisa, 5 paisa \& 1 paisa
- Our Problem is to devise an algorithm for paying a given amount using smallest possible number of coins.
- E.g. if we want to pay Rs. 2.89 (289 paisa)

Then the best solution is to give 10 coins:
2×100 paisa $=200$ paisa (2 coins)
3×25 paisa $=75$ paisa (3 coins)
1×10 paisa $=10$ paisa (1 coin)
4×1 paisa $=4$ paisa (4 coins)
TOTAL $=289$ paisa ($\mathbf{1 0}$ coins)

Making Change (1) Problem

- This is example of Greedy Algorithm
- For this problem we are always getting a Optimal Solution; however with a different series of values, or if the supply of some of the coins is limited, the greedy algorithm may not work.
- The algorithm is "greedy" because at every step it chooses the largest coin it can, without worrying whether this will prove to be a sound decision in the long run.

General Characteristics of Greedy Algorithm

- To construct the solution of our problem, we have a set of candidates. (Available coins)
- As algorithm proceeds, we accumulate two other sets. One contains candidates that have already been considered and chosen, while the other contains candidates that have been considered and rejected.
- There is a function that checks whether a particular set of candidates provides a solution to our problem.
- A second function checks whether a set of candidates is feasible.
- The selection function, indicates at any time which of the remaining candidates, that have neither been chosen nor rejected, is the most promising.
- Finally, an objective function gives the value of a solution.

Greedy Algorithm

function greedy(C: set) : set
\{C is the set of candidates\}
$s=\emptyset\{$ we construct the solution in the set $S\}$
while c <> \varnothing and not solution(s) do

$$
\begin{aligned}
& x=\operatorname{select}(c) \\
& c=c \backslash\{x\}
\end{aligned}
$$

if feasible ($\mathrm{s} \cup\{\mathrm{x}\}$) then $\mathrm{s}=\mathrm{s} \mathrm{U}\{\mathrm{x}\}$
if solution(s) then return s else return "No Solution"

Graphs: Minimum Spanning Trees

- Let $\mathrm{G}=<\mathrm{N}, \mathrm{A}>$ be a connected, undirected graph. where N is the set of nodes and A is the set of edges. Each edge has given length.

Problem: The Problem is to find a subset T of the edges of G such that all the nodes remain connected, and the sum of the lengths of the edges in T is as small as possible.

Note: A connected graph with n nodes must have at least $\mathrm{n}-1$ edges, on other side, a graph with n nodes and more than $n-1$ edges contains at least one cycle.

Greedy Algorithm

- The candidates are the edges in G
- A set of edges in solution if it consists a spanning tree for nodes in N
- A set of edges is feasible if it does not include a cycle
- Objective is to minimize the total length

1. Kruskal's Algorithm (MST Problem)

Kruskal's Algorithm (MST Problem)

- Arrange all the edges of the graph in increasing order of their length.
- So,
$\{1,2\},\{2,3\},\{4,5\},\{6,7\},\{1,4\},\{2,5\},\{4,7\},\{3,5\}$, $\{2,4\},\{3,6\},\{5,7\}$ and $\{5,6\}$

Kruskal's Algorithm (MST Problem)

Step	Edge Considered	Connected Components
Initialization	--	$\{1\}\{2\}\{3\}\{4\}\{5\}\{6\}\{7\}$
1	$\{1,2\}$	$\{1,2\}\{3\}\{4\}\{5\}\{6\}\{7\}$
2	$\{2,3\}$	$\{1,2,3\}\{4\}\{5\}\{6\}\{7\}$
3	$\{4,5\}$	$\{1,2,3\}\{4,5\}\{6\}\{7\}$
4	$\{6,7\}$	$\{1,2,3\}\{4,5\}\{6,7\}$
5	$\{1,4\}$	$\{1,2,3,4,5\}\{6,7\}$
6	$\{2,5\}$	Rejected
7	$\{4,7\}$	$\{1,2,3,4,5,6,7\}$

Kruskal's Algorithm (MST Problem)

Total Length $=\mathbf{1 + 2 + 3 + 3 + 4 + 4 = 1 7}$

2. Prim's Algorithm (MST Problem)

Prim's Algorithm (MST Problem)

- In this algorithm, the minimum spanning tree grows in a natural way, starting from an arbitrary root.
- At each stage we add a new branch to the tree already constructed.
- The algorithm stops when all the nodes have been reached.

Prim's Algorithm (MST Problem)

Total Length $=1+2+3+3+4+4=17$

Prim's Algorithm (MST Problem)

Step	$\{U, V\}$	B
Initialization	--	$\{1\}$
1	$\{1,2\}$	$\{1,2\}$
2	$\{2,3\}$	$\{1,2,3\}$
3	$\{1,4\}$	$\{1,2,3,4\}$
4	$\{4,5\}$	$\{1,2,3,4,5\}$
5	$\{4,7\}$	$\{1,2,3,4,5,7\}$
6	$\{7,6\}$	$\{1,2,3,4,5,6,7\}$

Prim's Algorithm (MST Problem)

Total Length $=1+2+3+3+4+4=17$

Prim's Algorithm (MST Problem)

Step	$\{U, V\}$	B
Initialization	--	$\{7\}$
1	$\{7,6\}$	$\{6,7\}$
2	$\{7,4\}$	$\{4,6,7\}$
3	$\{4,5\}$	$\{4,5,6,7\}$
4	$\{4,1\}$	$\{1,4,5,6,7\}$
5	$\{1,2\}$	$\{1,2,4,5,6,7\}$
6	$\{2,3\}$	$\{1,2,3,4,5,6,7\}$

Comparison of Kruskal's \& Prim's Algorithm

- For a graph with V vertices E edges, Kruskal's algorithm runs in $\mathbf{O}(\mathbf{E} \log \mathrm{V}$) time and Prim's algorithm can run in $\mathbf{O}(\mathbf{E}+\mathbf{V} \log \mathbf{V})$ amortized time.
- Prim's algorithm is significantly faster in the limit when you've got a really dense graph with many more edges than vertices. Kruskal performs better in typical situations (sparse graphs) because it uses simpler data structures.

Another Example (MST Problem)

Answer

