Shortest Paths using Greedy Method

Graphs: Shortest Paths

- Consider a graph $\mathrm{G}=<\mathrm{N}, \mathrm{A}>$ where N is the set of nodes and A is the set of directed edges. Each edge has nonnegative length. One of the node is designated as a source node.
- The problem is to determine the length of the shortest path from the source to each of the other nodes of the graph.
- This problem can be solved by a greedy algorithm often called "Dijkstra's Algorithm"

Dijkstra's Algorithm

- Assume that the nodes of G are numbered from 1 to n, so $N=\{1,2, \ldots, n\}$, where node 1 is source.
- Suppose that a matrix L gives the length of each directed edge; $L[i, j]>=0$, if the edge (i, j) belongs to A , and $L[i, j]=$ infinity otherwise.

Dijkstra's Algorithm - Example

Dijkstra’s Algorithm

Step	V	C \{2..n\}	D[2..n]
Source Node : 1			$\begin{array}{lllll}2 & 3 & 4 & 5\end{array}$
Initialize	--	\{2,3,4,5\}	[50,30,100,10]
1	5 [10]	\{2,3,4\}	[$50,30, \underline{20,10]}$
2	4 [20]	$\{2,3\}$	[40,30,20,10]
3	3 [30]	\{2\}	[35,30,20,10]
Step	V	C \{2..n\}	D[2..n]
Source Node : 5			$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
Initialize	--	\{1,2,3,4\}	$[\infty, \infty, \infty, \underline{10}]$
1	4 [10]	\{1,2,3\}	[$\infty, \underline{\mathbf{3 0}, 60,10]}$
2	2 [30]	\{1,3\}	[$\infty, 30,60,10]$
3	3 [60]	\{1\}	[$\infty, 30,60,10$]

Fractional Knapsack Problem (1)

- We are given n objects and a knapsack.
- For $\boldsymbol{i}=1,2$.. \boldsymbol{n}; object \boldsymbol{i} has a positive weight $\boldsymbol{w}_{\boldsymbol{i}}$ and a positive value $\boldsymbol{v}_{\boldsymbol{i}}$. The knapsack can carry a weight not exceeding \boldsymbol{W}.
- Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while respecting the capacity constraints.
- In this simple version of a problem we assume that the objects can be broken into smaller pieces, so we may decide to carry only a fraction xi of object i; where $0<=x i<=1$

Knapsack Problem (1)

Solution: if any number of each box is available, then three yellow boxes and three grey boxes.
if only the shown boxes are available, then all but not the green box.

Knapsack Problem (1)

In symbols, the problem can be stated:
Maximize $\sum_{i=1}^{n} v_{i} x_{i}$ subject to $\sum_{i=1}^{n} w_{i} x_{i} \leqslant W$,

For this problem, an optimal solution is:

$$
\sum_{i=1}^{n} w_{i} x_{i}=W
$$

Knapsack Problem (1) - Example

- $N=5$ Objects and $W=100$

	1	2	3	4	5
W	10	20	30	40	50
V	20	30	66	40	60

1. Select objects in order of decreasing value, we choose Object $3(v 3=66, w 3=30)$, Object $5(v 5=60, w 5=50)$ and object 4 $(w 4=40 / 2=20, v 4=20), \quad$ So, $\mathbf{v 3}+\mathbf{v 5}+\mathbf{v 4}=66+60+20=146$
2. Select objects in order of increasing weight, we choose Object 1 ($w 1=10, v 1=20$), Object $2(w 2=20, v 2=30)$, Object 3 ($w 3=30, v 3=66$), Object $4(w 4=40, v 4=40)$, So $\mathbf{v 1}+\mathbf{v 2}+\mathbf{v 3}+\mathbf{v 4} \mathbf{=} \mathbf{2 0}+\mathbf{3 0}+\mathbf{6 6} \mathbf{+ 4 0}=\mathbf{1 5 6}$

Knapsack Problem (1) - Example

- $N=5$ Objects and $W=100$

	1	2	3	4	5
W	10	20	30	40	50
V	20	30	66	40	60
$V i / W i$	2.0	1.5	2.2	1.0	1.2

3. Select objects in order of decreasing vi/wi, we choose Object 3 (v3=66,w3=30), Object $1(v 1=20, w 1=10)$, object $2(v 2=30, w 2=20)$ and Object $5(w 5=50 \times 4 / 5=40, v 5=60 \times 4 / 5=48)$ So, $\mathbf{v 3} \mathbf{+} \mathbf{v 1} \mathbf{+ v 2} \mathbf{+ v 5}=\mathbf{6 6} \mathbf{+ 2 0} \mathbf{+ 3 0 + 4 8 = 1 6 4}$
Conclusion: If objects are selected in order of decreasing vi/wi, then algorithm knapsack finds an optimal solution.

Knapsack Problem (1) - Example

Select	Xi						Value
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5		
Max Vi	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{1}$	146	
Min Wi	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	156	
Max Vi/Wi	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0 . 8}$	164	

It's also called Fractional Knapsack

