
SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR

COMPUTER ENGINEERING DEPARTMENT

B.E. Semester – VI (Computer Engineering)

ASSIGNMENT - 1

Subject: System Programming (160706) Date: 07/03/2014

Q.1 List various phases of a language processor. Explain roles of first two phases of it. Also

explain symbol table.

Q.2 Define following terms:

1. Execution Gap 2. Interpreters 3. Non Terminal Symbol

4. Derivation 5. Reduction 6. Parse Tree

Q.3 Write unambiguous production rules (grammar) for arithmetic expression containing +, – ,

*, / and ^ (exponentiation).Construct parse tree and abstract syntax tree for:

<id> – <id> * <id> ^ <id> + <id>

Q.4 Explain Left Recursion, Left Factoring and Backtracking in Top-down parsing with

suitable example.

Q.5 Explain working of LL(1) parser. Parse the following string.

|- <id> * <id> * <id> + <id> -|

Q.6 Given a grammar,

E  TA

A  +TA | ε

T  VB

B  *VB | ε

V  id | (E)

Develop an LL(1) parser table and parse the string: id * (id + id)

Q.7 Write unambiguous production rules to produce arithmetic expression consisting of +, -, *,

/, ^ (exponent), id. Use them for parsing id ^ id ^ id * id + id / id using shift-reduce parser

(Naïve bottom up parsing). Also list limitation(s) of the method.

Q.8 What is operator precedence parsing? Show operator precedence matrix for following

operators: +, - , * , (,). Parse the string: |- <id> + <id> * <id> -|

Q.9 Consider following grammar

 S -> aSbS | bSaS | epsilon

Derive the string abab. Draw corresponding parse tree. Are these rules ambiguous? Justify.

Q.10 Construct DFA for following regular expression. (a* | b*) a* ab#

Q.11 Given the grammer, perform the top-down parsing for the string: +*35*45

 E = +TE | E

 T = *VT | V

 V = 0 | 1 |…| 9

Q.12 What is bottom up parser? Explain operator precedence parser. Let a grammar for a

language is E  E+E | E*E | id. Check validity of following string using stack based

operator precedence parser.

id * id + id * id

